
Automatische Analyse von Lungenrundherden im CT

Dr. rer. nat. Volker Dicken

Me Vis - Zentrum für Medizinische Diagnose Systeme und Visualisierung an der Universität Bremen

MeVis - Zentrum für Medizinische Diagnose Systeme & Visualisierung

40 Mitarbeiter, davon 35 Wissenschaftler

> 55 Klinische Partner, Deutschland (>30),
 Europe \ D (13), USA (6), Asien (7)

- Quantitatives Neuro-Imaging (MRT)
- Kardio-Vakuläre Diagnostik (CT & MRT)
- Bildanalyse von Thorax CTs
- Digitale Mammographie & Brustkrebs MRT
- Auswertung dynamischer Bilddaten (MRT & CT)
- Interventions Planung (Leber OP & HF-Ablation)

am FB Mathematik / Informatik

10 Mitarbeiter

Struktur

seit 1995

g6mbH

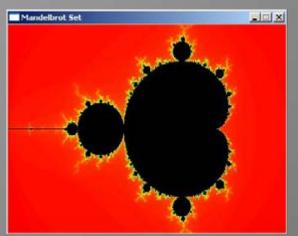
an der Universität Bremen

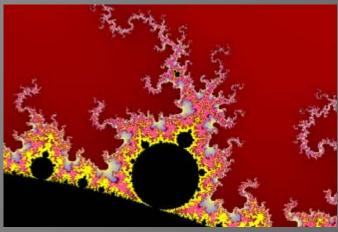
40 Mitarbeiter

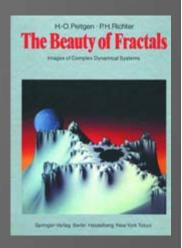
Institutsleitung: Prof. Heinz-Otto Peitgen

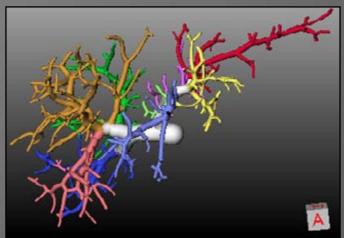
seit 1997

GmbH & Co.KG


Holding seit 2001 20 Mitarbeiter


MeVis BreastCare JV: SIEMENS


MeVis Diagnostics JV: MEDOS


Historischer Streifzug

MeVis Mission

Unterstüzung von Medizinern durch

Computergestützte Analyse medizinischer Bilddaten

- Quantitative Radiologie
 - z.B. Volumina von Organen und Untereinheiten sowie Läsionen
 - Gefäßgeometrie
- Innovative Visualisierung ausgebend von Analyseergebnissen
 - 3D Darstellungen und Quantifizierung der Patientenanatomie zur OP Planung
 - Besser verständliche bebilderte Befunde
 - · z.B. bei Metastasenpatienten
 - Farbcodierung von räumlich verteilten Quantifizierungsergebnissen
 - · z.B: Dichteverteilung in der Lunge

Analyse radiologischer Bilddaten

Multislice CT: "3D-Röntgen"
sehr hohe Auflösung
~0,6mm isotrope Voxel möglich
und Geschwindigkeit
10sec.-1 min Aufnahmedauer
u.U. Hunderte von Bildern pro Scan

Nachteil: Geringe Differenzierung von Gewebetypen (nur Dichte abgebildet) MRT: strahlungsfrei reduzierte Auflösung kleine isotrope Voxel nur schwer möglich geringe Geschwindigkeit mehrere Min. für 3D Seq. Probleme mit Bildartefakten Bewegung, Physik Magnetfeldstörungen

Analogie zur Labormedizin um 1900

Übergang von sensorischer Beurteilung der Körperflüssigkeiten zur quantitativen biochemischen Analytik

Wird verbesserte Analytik und Quantifizierung in der Radiologie langfristig vergleichbar weitreichende Konsequenzen haben?

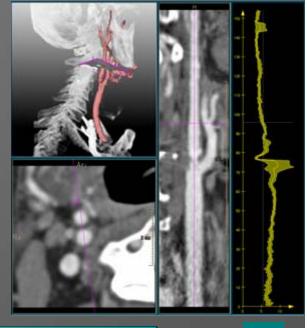
Neuro-Applikationen


Volumetrie im Gehirn

- Gesamtvolumen & Anteile
 Graue / Weiße Substanz
- · Gehirn-Ventrikel Volumen
- Läsionen: Tumore und Herde bei Multipler Sclerose

Diffusions Tensor Imaging

- · Fibertracking
- · Darstellung der Faserbündel



Gefäßanalyse

A.L.

- Curved MPR der Gefäße
 - Reformatierungen senkrecht zum Gefäß
 - Stenosequantifizierung

Projekte zu Brustkrebs

· EU Projekt Screen Trial

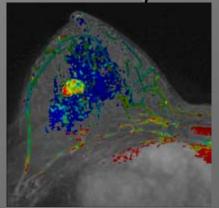
Klinische Einführung der Digitalen Befundung von Mammographien

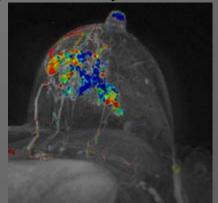
 Dynamische MRT Mamma-Untersuchungen vor Biopsien und zur Navigationsunterstützung Quantifizierung von Tumoraktivität durch lokale Analyse der Dynamik von Kontrastmittelanreicherungen

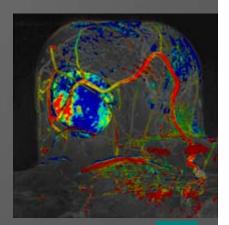
- Time-To Peak, Wash-Out rate,....
- Mit 3D-Bewegungskorrektur

Lesion position

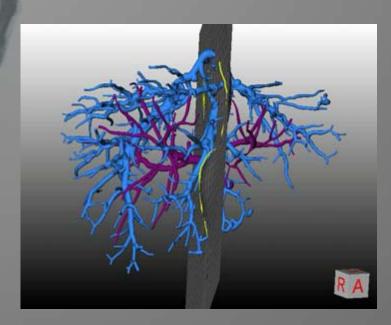
Grid. D4 Grid Offset: F0.1 A0.9

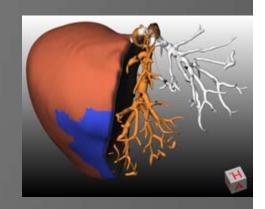

Naedle is 14ga (BBC)


Depth: +9.30 cm

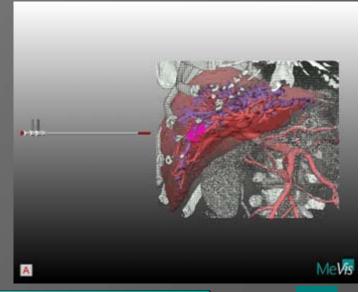

Navigationstool der Fa. MRI Devices

Visualisierung der Kontrastmitteldynamik (Farb-MIP)





3D-Aufarbeitung von Leber-Daten

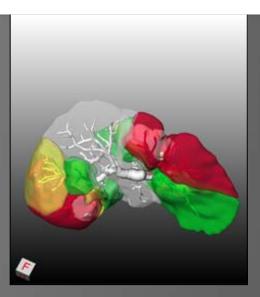

- · OP-Planung für
 - Leberlebendspende unter Verwandten
 - Tumor- und Metastasen-Chirugie

 Simulation der HF-Ablationen von Lebermetastasen

Schon > 650 Leber OPs geplant

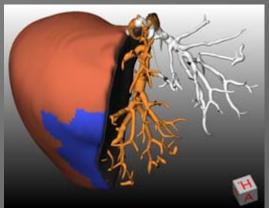
Risiko Analyse bei Tumor OP

Farbcodierung: zu resezierendes Gewebe bei Sicherheitsabstand


- 5 mm rot
- 10 mm gelb
- 15 mm grün

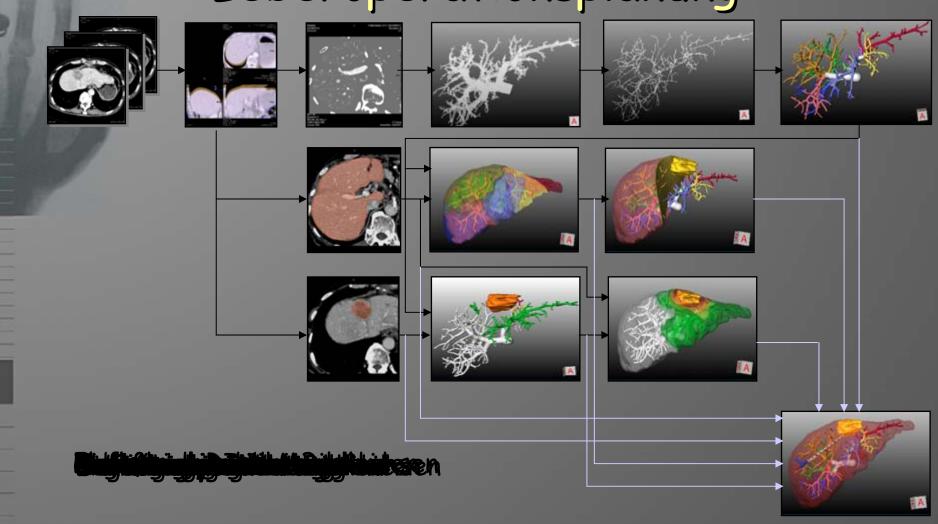
zum Rand des Tumors

Trennung rechts / links der mittleren Lebervene ?


Abhängig von Größe der Versorgungsgebiete der Seitenäste

Daten: AZG Groningen

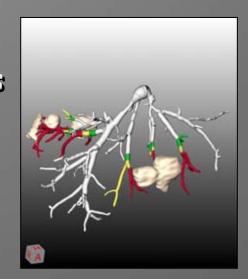
Dilemma der Mittleren Lebervene



Daten: University Hospital Kyoto

Bildanalyse in der Leberoperationsplanung

3D-Risikoanalyse als Dienstleistung


Spin-Off im März 2004:

MDS mit Dienstleistungs-Angebot:

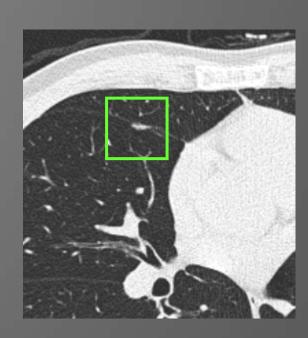
Telemedizinische Aufarbeitung von Leber CT Daten

Nachfrage: Insbesondere aus Ostasien und den USA

Data Acquisition

Diagnosis

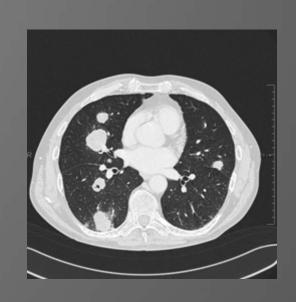
-14-


Arbeiten zur Lunge

- · Relevanz von Lungenkrankheiten wird oft unterschätzt:
 - Lungenkrebs
 - Lungenemphysem / COPD
 - Asthma
 - Lungenembolie
 - Lungenentzündung
- Gehören zur den häufigsten Todesursachen oder chronischen Erkrankungen
- Verursachen einen erheblichen Anteil aller Gesundheitsausgaben

Motivation Lungenkrebs-Screening

- In der Mehrzahl der hochaufgelösten Thorax Multislice-CT Scans von älteren Menschen finden sich kleine Lungenherde, insbesondere bei Rauchern
- Diese sind in der Regel
 gutartig (selbst bei Krebspatienten!)
 - zu klein für Biopsien
 - mühselig zu suchen
- Chirurgische Abklärung oder Biopsie medizinisch und volkswirtschaftlich nicht möglich oder nicht sinnvoll
- Ab einer gewissen Größe (3-5mm)
 - → Beobachtung (nach ca. 6 Monaten) auf tumorverdächtiges Wachstum
- Ziel: Lungekrebs möglichst in kurierbarem Stadium Ia entdecken.



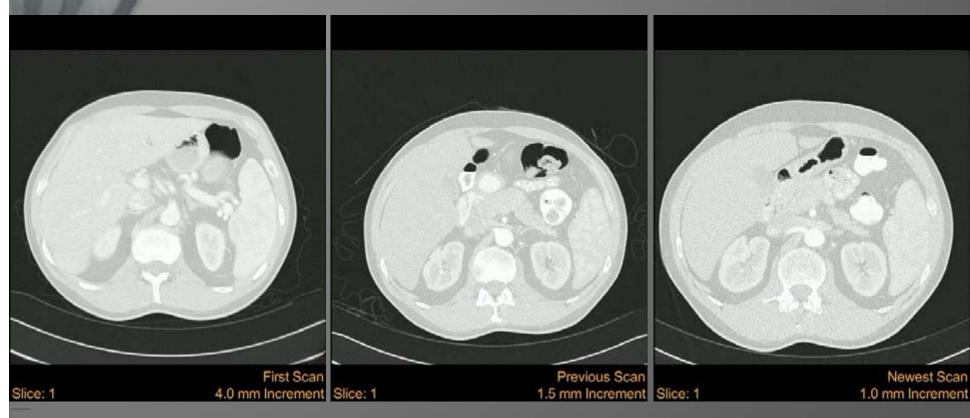
-16-

Motivation Therapiemonitoring

- Chemotherapien bei systemischen Tumorerkrankungen sind verbunden mit starken Belastungen für den Patienten und hohen Kosten
- ca. 350.000 neue Krebspatienten pro Jahr allein in Deutschland
- Lungenkrebs am zweithäufigsten (~14%) und häufig (> 50%) inoperabel
- ca. 25% aller onkologischen Patienten entwickeln Lungenmetastasen
- Krebserkrankungen verursachen 15 Mrd. Euro Kosten jährlich nur in Deutschland
- Präzise Beurteilung des Therapieerfolgs ist wesentliche Voraussetzung für eine adäquate Therapieanpassung und die Entwicklung neuer Therapien

Hintergrund

- · Radiologische Beurteilung von Tumorwachstum ist zentral für das Management von Chemotherapien.
- Chemotherapien sind sehr häufig, hochbelastend (toxische u.a. Nebenwirkungen), risikoreich und sehr teuer.
- Wichtige Aufgabe: (Nicht-)Ansprechende Therapien sicherer und frühzeitig erkennen!
- Die Verbesserung der Tumorvolumetrie hat Potential zu großem klinischen Effekt.

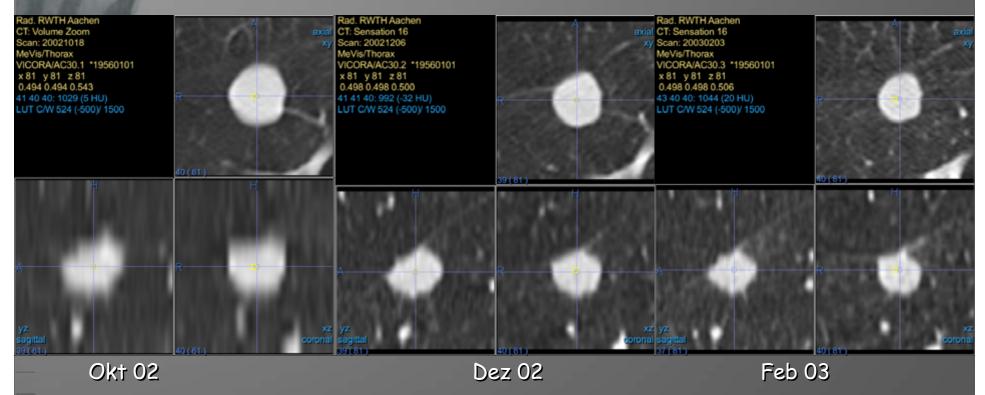

Gesundheitsökonomische Bedeutung

Einige grobe Abschätzungen:

- Neue Krebspatienten pro Jahr in Deutschland: ca. 350.000.
- Radiologische Untersuchungen wegen Krebs pro Jahr: ca. 1-5 Mio. CT-Scans.
- Direkte Kosten: einige 100 Mio. EUR.
- Die Ergebnisse sind maßgeblich für die Verteilung von mehreren Mrd. EUR / Jahr Krebs-Behandlungskosten.

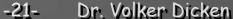
Drei Kontrolluntersuchungen auf Lungenmetastasen

Daten: VICORA Partner RWTH Aachen, Prof. Günther, Prof. Wein: 45 MB / 123 MB / 192 MB

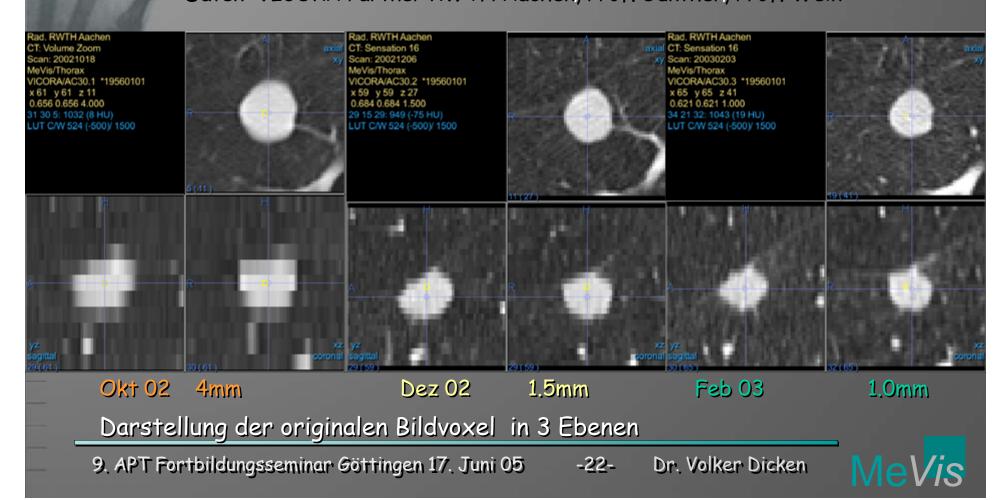

9. APT Fortbildungsseminar Göttingen 17. Juni 05

-20-

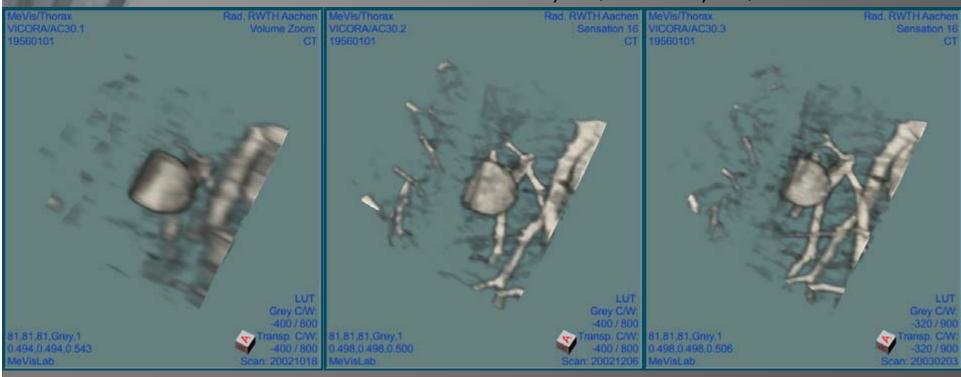
Dr. Volker Dicken



Drei Kontrolluntersuchungen auf Lungenmetastasen Daten: VICORA Partner RWTH Aachen, Prof. Günther, Prof. Wein


Interpolierte Darstellung in 3 Ebenen

9. APT Fortbildungsseminar Göttingen 17. Juni 05



Drei Kontrolluntersuchungen auf Lungenmetastasen Daten: VICORA Partner RWTH Aachen, Prof. Günther, Prof. Wein

Drei Kontrolluntersuchungen auf Lungenmetastasen Daten: VICORA Partner RWTH Aachen, Prof. Günther, Prof. Wein

Okt 02 Dez 02 Feb 03

Lokales Volumenrendering aus supergesampelten Daten

9. APT Fortbildungsseminar Göttingen 17. Juni 05

-23-

Dr. Volker Dicken

RECIST Kriterien (1999)

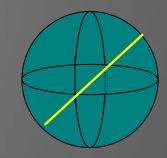
Quantifizierung für klinische Studien:

Messe axialen Durchmesser für die größten Tumoren

Klassifikation: stable complete progressive partial disease disease response response Tumoren kleinere > +20% < -30% Durchmesser: nicht mehr Änderungen sichtbar Volumen-< -66% > + 73% wachstum:

Herausforderung Tumorvolumetrie!

 Bestimmung von Volumina über Messung von Durchmessern


 Quantifizierung von Wachstum als Differenz zweier Volumina

· Volumetrie und Partialvolumeneffekt

Statistische Untersuchungen

Fehlerverstärkung bei Berechnung von Kugel-Volumina aus Durchmessern ($V = \frac{\pi}{6}D^3$) um ca. einen Faktor 3.

 Fehlerverstärkung der Quantifizierung von Volumen-Wachstum aus Durchmessern ist enorm bei moderatem Wachstum.

(Faktor ca. 22 bei W = 20% des Volumens, Faktor ca. 45 bei W = 10%)

 Hohe Wahrscheinlichkeit rasch wachsende, nicht auf Therapie ansprechende Tumore fälschlich als "stable disease" zu klassifizieren.

Partialvolumeneffekt

Phantom:

Tumor (Kugel)

 $8 \, \text{ml}, D = 25 \, \text{mm}$

5mm Schichtabstand

0,5 mm Pixel

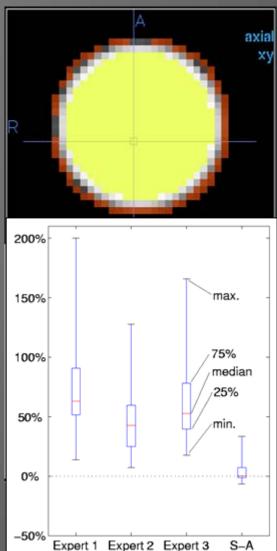

Daten simulieren

perfekte Aufnahme &

ideale Segmentierung

Randvoxel bei idealer Segmentierung:
- Ausgeschlossene Partialvolumenvoxel:

8ml @ 1ml @ 5mm 1mm 1mm 3mm 58% 14% 30% 49% 35% 10% 20% 69% (%- Anteile am wahren Volumen)


Konsequenz aus Partialvolumeneffekt

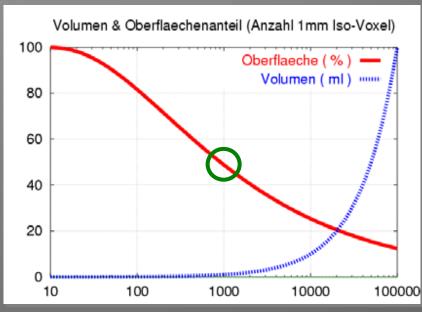
Sehr sorgfältig manuell gezeichnete Konturen mit systematisch 1 Voxel Abstand zur Idealkontur (~50% Kontrast)

→ Volumen-Fehler von 15 - 70% für kugelige Objekte von 10 - 1 ml

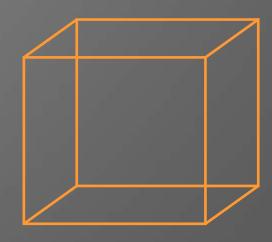
Fehleranalyse von manueller / Software Volumetrie

Aus: Volumetrie von MS-Läsionsphantomen im MR, Multispektrale Analyse; Jan. Rexilius, MICCAI 2003 1ml Kugel gescannt mit 5 mm Schichten

Wie ist das zu verstehen?


Vergleiche 1ml Würfel in

Auflösung $1 \times 1 \times 1$ mm pro Voxel


 $10 \times 10 \times 10$

= 1000 Voxel

Inneres: $3 \times 3 \times 3 = 512 \text{ Voxel}$

49% Oberfläche

Thesen

- Therapieversagen bei manueller Quantifizierung von Tumoren oft erst bei Tumorverdoppelung erkannt.
- Verdoppelung auch rein visuell gut erkennbar.
- Manuelle 3D-Messung (Planimetrie) zu aufwändig und für kleine Objekte nicht genau genug.
- Für sichere / frühzeitige Beurteilung des Ansprechens von Chemotherapien ist hochgenaue, vergleichende Volumetrie-Software außerordentlich wichtig.

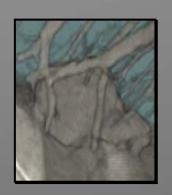
Konsequenz für Onkologische-Studien

- Bei hoher Variabilität der Messung braucht man viele Patienten, um eine Änderung unter Therapie zu belegen
- Bei geringer Variabilität der Einzelmessung braucht man deutlich weniger Patienten um einen Effekt statistisch hinreichend sicher zu erkennen
- Bei größerer Messgenauigkeit sind Effekte zudem in den einzelnen Patienten früher nachweisbar
- → Eine genaue softwaregestützte Volumetrie ermöglicht kleinere und somit schneller und preiswerter durchführbare Studien
- · Rahmenbedingung:

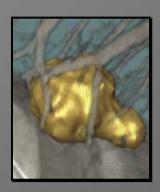
Akzeptanz der Volumetrie bei der Zulassungsbehörde und den Onkologen

Lungenapplikation "PulmoTreat"



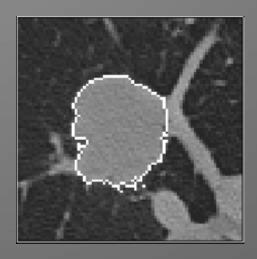


Tumor-Volumetrie und Follow-Up



- Robuste Segmentierung
- Geeignet auch für große Raumforderungen und komplexe Morphologie
- Getestet an über 700 Läsionen

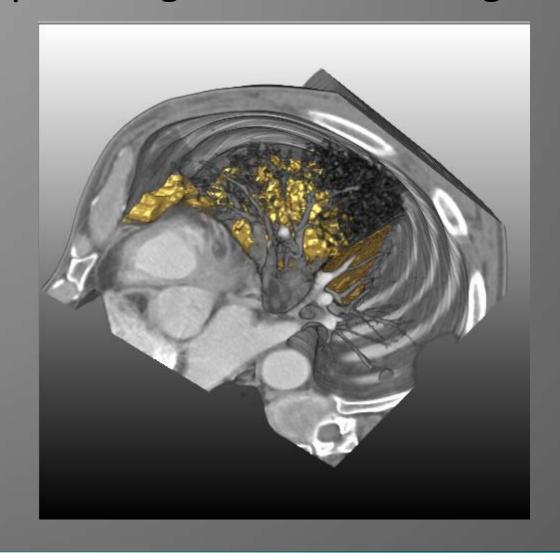
Segmentierung


Problem:

Kontakt zu anderen hochdichten Strukturen

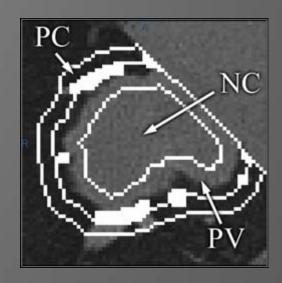
Idee:

Hybrides Verfahren, das mit morphologischen Methoden verbundene Strukturen abtrennt


Beispiel:

Subjitativenezerhalteheltener Trestelvommittiderifkegion-Growing Maskeund Dilation

Beispiele segmentierter Lungenherde



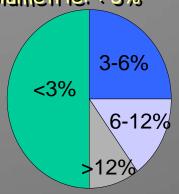
Volumetrie

Einfaches "Voxel zählen" aufgrund von Partialvolumeneffekten nicht ausreichend

Daher:

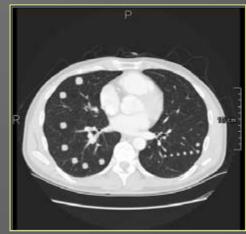
- (1) Definiere Partialvolumen-Region (PV) um die Rundherdgrenze (2 mm Abstand in jede Richtung)
- (2) Ermittle mittlere Dichte von Parenchym (PC) und Rundherd-"Kern" (NC)
- (3) Alle Voxel innerhalb von PV werden gewichtet zum Volumen des Kerns hinzuaddiert

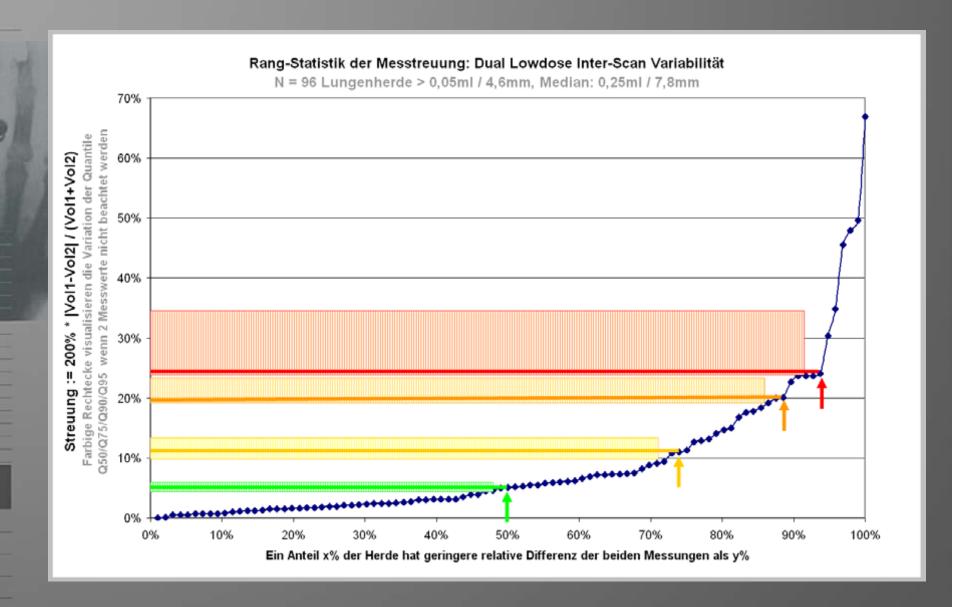
Tumor-Volumetrie und Follow-Up


- · Hoch reproduzierbare Volumetrie von Lungen-Läsionen
- Effizienter Workflow für Follow-Up Untersuchungen
- Automatische Korrelation mit Ergebnissen der Voruntersuchung
- Geeignet für Screening und Onkologisches Follow-Up

Evaluation Pulmo Treat

Sehr gute Inter-Scan Reproduzierbarkeit für komplexe Raumforderungen:
 Vergleichende Volumetrie in doppelten Low-Dose Scans von
 8 Patienten mit multiplen (in der Summe 96) Metastasen.


Mediane Abweichung der Volumetrie: < 3%



Daten: Dag Wormanns, Universitätsklinikum Münster

 Sensitiv: Volumenwachstum synthethischer Läsionen sicher erkannt ab
 10 % Volumenwachstum (>=10mm),
 bei 5mm Läsionen ab 20% Wachstum
 Daten: H. Shin, MHH Hannover

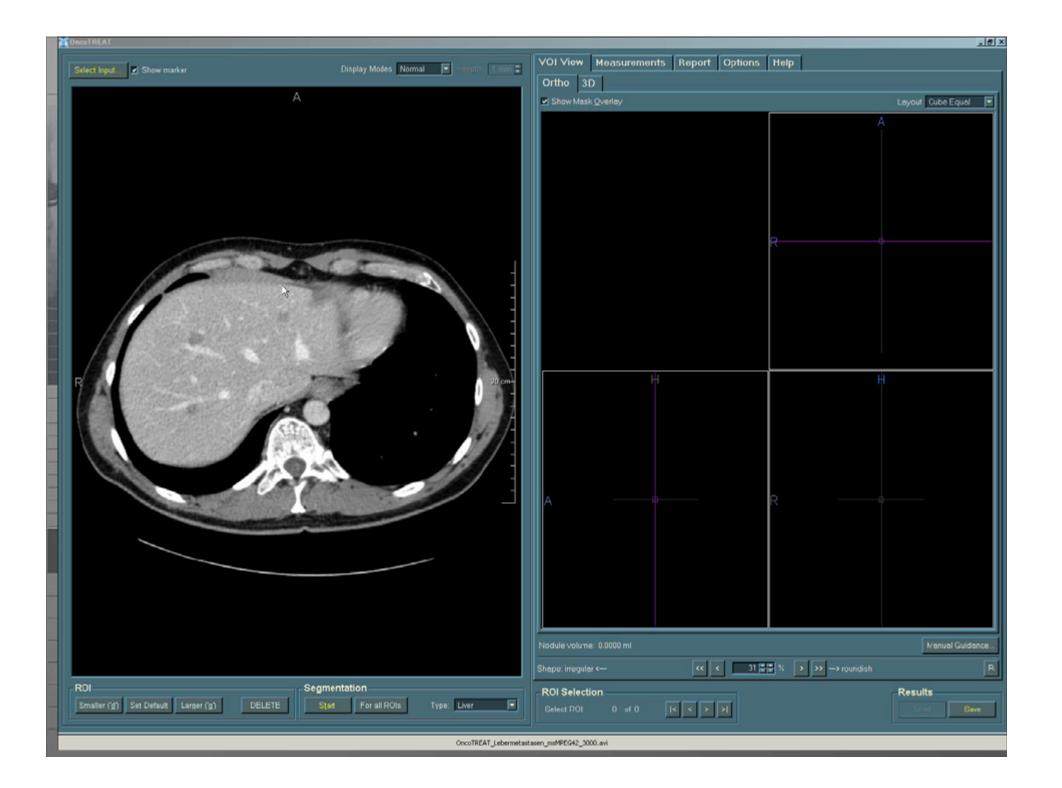
Entwicklung der Tumorvolumetrie

- 1. Lungenläsionen
- In fast allen Fällen sehr gut volumetrierbar,
- Forschungsergebnisse diverser Ansätze für kleine Läsionen transferiert in Industrieprodukte
- Detektionssoftware seit ca. 2 Jahren klinisch verfügbar
 - GE: ALA(2),
 - Siemens: LungCARE + NEV
 - R2 (auch in Vitrea / Toshiba): ImageChecker,
 - · Philips CT Pulmo
 - iCAD (auch in Viatronix / TeraRecon)
 - · Median: CAD-Lung
 - MedicSight
 - Prototyp für onkologische Läsionen und große Bronchialkarzinome: MeVis OncoTREAT
- Größere klinische und Phantom-Studien zur Reproduzierbarkeit und Nutzen der System und laufen
- Lungcancer-Screening Studien z.B: Nelson Studie mit 2 x 8000 Rauchern in NL und B (LungCare)
- Studien zum Systemvergleich geplant

Zukunft der Tumorvolumetrie

2. Lebermetasen

- zunächst Segmentierung hypodenser Läsionen möglich
- 1. Ergebnisse für hyperdense und peripher anreichernde Herde
- hochgenaue Volumetrie von hyperdense Läsionen in Arbeit
- Evaluationen zur Interobserver Reproduzierbarkeit laufen


3. Vergrößerte Lymphknoten (abdominell und mediastinal)

- Segmentierung in vielen Fällen möglich
- Probleme in der Bildverarbeitung bei Lymphknotenkonglomeraten und flächigem Kontakt zu großen Gefäßen

4. Onkologische Gehirnläsionen

- Hirn MRT Daten sind sequenzabhängig sehr vielfältig und bisher nur selten in hoher 3D Ortsauflösung gescannt
- Nur erste Ergebnisse verfügbar für MP-Rage Bilder mit <= 1mm Isotropen Voxeln, Probleme mit Inhomogenitäten und Bildartefakten

Ausblicke

- Nichtplanare "anatomische" Reformatierung
- · -> Ziele:
 - Leichteres Auffinden subtiler Pleuraständiger Herde und Oberflächnenaher Veränderungen,
 - Infomation über Abstand zur Organoberfläche für Interventionsn oder Chirurgische Eingriffe

- · Analyse der CT Kontrastmittelanreichernung
 - → Ziel: Reduktion der Anzahl von Biopsien und Resektionen benigner Herde

Anatomische Reformatierung

Nicht planare Reformatierung s. d. Punke mit gleichem Abstand zur Lungeoberfläche in einer Schicht liegen

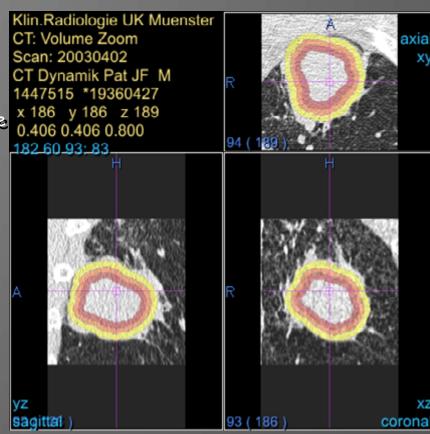
Neue Visualisierungen von Thorax HRCT

Anatomische Reformatierung

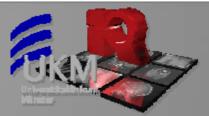
Dynamische CT Untersuchungen an Lungenläsionen

- Experimentelle Studie zur Kontrastmitteldynamik im CT zur Bestimmung der Tumorvitalität
- Protokoll: eine ca. 5cm dicke Schicht wird nativ und 4 x nach Kontrastmittel in ca. 1 min Abstand in eingeatmentem Zustand gescannt
 - (Partner: Dag Wormans, Uni Münster)
- Frage bisher: Ist eine Biopsie angeraten oder können wir die Läsion (5-15mm) noch rein radiologisch beobachten?

Dynamik in Zwiebelschalen


Auswerteansatz

Rekonstruiere die Daten in für tomographische Daten extrem hoher Ortsauflösung:


ca. 0,3-0,5mm isotrop möglich

- → ca. 1/30 1/8 mm^3
- Segmentiere die Läsion zu allen Zeiten (das ist nur im CT gut möglich, für Lunge sehr leicht)
- Berechne "Zwiebelschalen" von ca. 0,5-1mm Stärke
- Vergleiche mittlere Dichte pro Zwiebelschale zu allen 5 Zeiten
- Vorteile:
 - Gute Korrespondenz zu Angiogenesmodell

 - Keine aufwendige Registrierung! Ortsauflösung (Vol.) ca. 8-30 mal besser als MR
- Nachteile:
 - Strahlung bei Aufnahme
 - Geringe zeitliche Auflösung (ca. 1 min)
 - Maßiges Signal Rauschverhaltnis wg. geringem relativen Enhancement von ca. 10-30 HU bei 800 HU Kontrast und Pixelrauschen von 10-30 HU

LMU München Großhadern

Universitätsklinikum Tübingen

Charité Berlin

Dt. Krebsforschungszentrum, Heidelberg

Medizinische Hochschule Hannover

Rheinisch-Westfälische Technische Hochschule Aachen

Zentralkrankenhaus

Bremen-Ost

Institut für MR Diagnostik, Bremen

VICORA

www.vicora.de

Software Plattform MeVisLab

- · Website: www.mevislab.de
- MeVisLab Eigenschaften
 - Effizienzsteigerung bei R&D
 - Rapid application prototyping
 - Klinische Evaluation von Prototypen
 - Möglichkeit des Produkttransfers
- MeVisLab Geschichte
 - 5. Generation der hausinternen Entwicklungsumgebung
 - Vorläufer ILAB4 über 50 Entwickler Mannjahre bewährt
 - Öffentliche Beta version: Mai 2004
 - MeVisLab 1.0 final release: Aug. 2004
- MeVisLab licenses
 - Windows und Linux
 - MeVisLab Basic:
 - · free for non-commercial, academic, research, private use
 - MeVisLab 5DK:
 - · free demo version (eingeschränkte Funktionalität)
 - · Lizenzmodelle für kommerzielle Anwender (Applikation und Entwicklung)

Freie MeVisLab Demoversion per Download verfügbar

