

Klinik f. Diagnostische Radiologie

Otto-von-Guericke Universität Magdeburg Direktor: Prof. Dr. med. W. Döhring

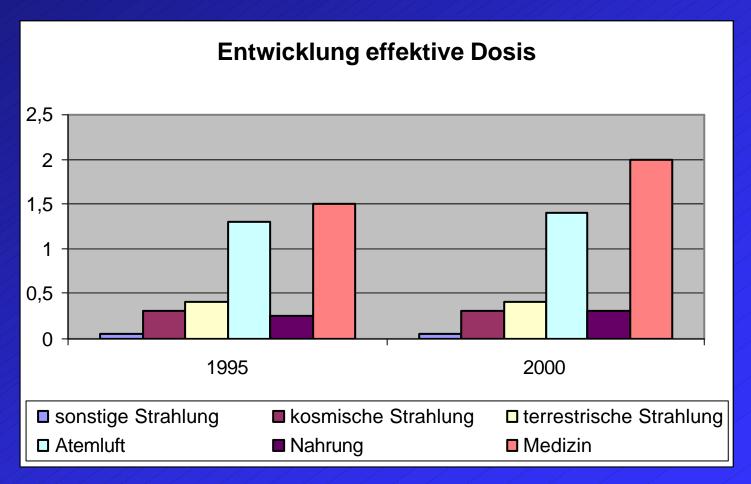
Multislice - CT: Dosisaspekte

Hoeschen C

e-mail:

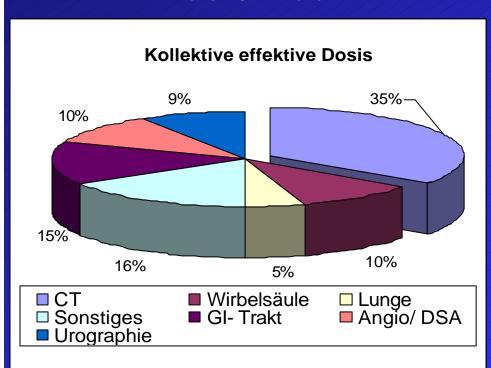
christoph.hoeschen@med.uni-magdeburg.de

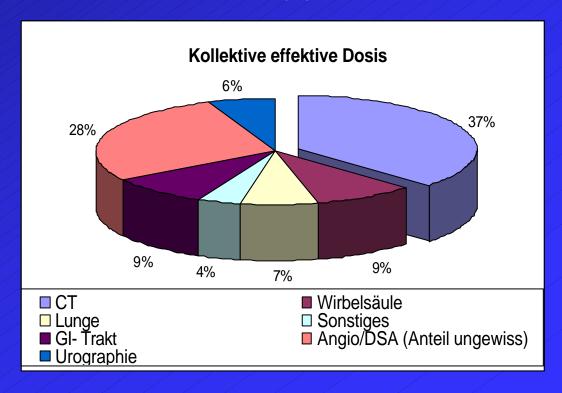
Wie kann die Dosisbelastung bei Röntgen -Untersuchungen eingeschätzt werden?


Effektive Dosis -

Risikoabschätzung anhand der Summe der Organdosiswerte der bestrahlten Organe multipliziert mit Gewebewichtungsfaktoren

$$E = \sum_{i} w_{i} \cdot D_{org,i}$$




Entwicklung der effektiven Dosis in der Bundesrepublik Deutschland

Entwicklung des Anteils der Computertomographie an der effektiven Dosis in der Bundesrepublik Deutschland 1990 -1992

Bestimmung der effektiven Dosis in der Computertomographie

- 1. Röhrenstrom
- x 2. Zeit
- = Ladung
- x 3. Normierter CDTI frei Luft
- x 4. Spannungskorrektur
- = Achsendosis frei Luft
- x 5. Schichtdicke
- x 6. Anzahl Schichten
- = Dosislängenprodukt
- x 7. Konversionsfaktor
- x 8. Gerätekorrekturfaktor
- = Effektive Dosis

I (mA)

t (s)

Q (mC, hier mAs)

_nCDTI_I (mGy/mAs)

 \mathbf{k}_{U} (1)

 $CDTI_{I}$ (mGy)

h (cm)

(1)

DLP_I (mGy cm)

 f_{av} (mSv/(mGy cm))

 k_{CT} (1)

E (mSv)

Bestimmung der effektiven Dosis in der Computertomographie

1. Röhrenstrom

x 2. Zeit

= Ladung

x 3. Normierter CDTI frei Luft

x 4. Spannungskorrektur

= Achsendosis frei Luft

x 5. Schichtdicke

x 6. Anzahl Schichten

= Dosislängenprodukt

x 7. Konversionsfaktor

x 8. Gerätekorrekturfaktor

= Effektive Dosis

140 mA

1s

140 mAs

0,177

 $(120/120)^{2,5}$

24,78 mGy

1,0 cm

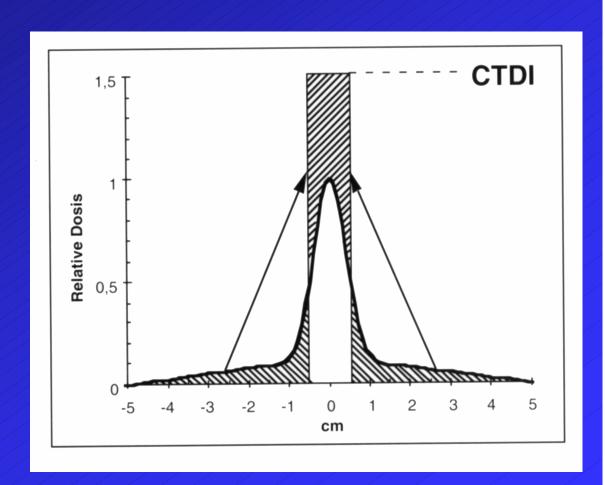
20

495,6 mGy cm

0,0178 mSv/(mGy cm)

1,08

9,527 mSv



Multislice - CT: Dosisaspekte

Was ist überhaupt CDTI?

Computed Tomography Dose Index:

Äquivalentwert der Dosis innerhalb der nominalen Schicht, wenn man die gesamte Strahlung in einem rechteckigen Profil mit der nominellen Schichtdicke konzentriert.

Was ist überhaupt _nCDTI_L?

Normierter CTDI gemessen frei Luft:

Kenngröße des Geräts,

CDTI (gemessen frei in Luft) geteilt durch mAs.

Achtung:

!! Keine Aussage über benötigte Dosis / Untersuchung !!
!! Keine Aussage über Dosiseffizienz des Gerätes !!

Was ändert sich beim Multislice - CT?

$$\underline{\mathbf{h}} = > \underline{\mathbf{H}} = \mathbf{h} \times \mathbf{N}$$

Pitch

Volumen - Pitch

- Einzelzeilen - Pitch

Was ändert sich beim Multislice - CT? Pitch

Volumen - Pitch

Maß für das erfasste Volumen

Neutralwert = N

Werte zwischen 2 und 32

nicht normgerecht (IEC), irreführend Einzelzeilen - Pitch

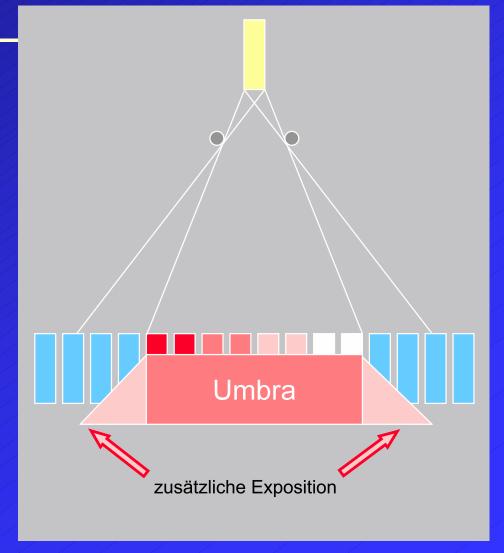
Maß für durchnittlichen Schichtversatz

Neutralwert = 1

Werte zwischen 0,25 und 4

normgerecht, vergleichbar Pitch bei Einzeilenscanner

relevant für Dosis

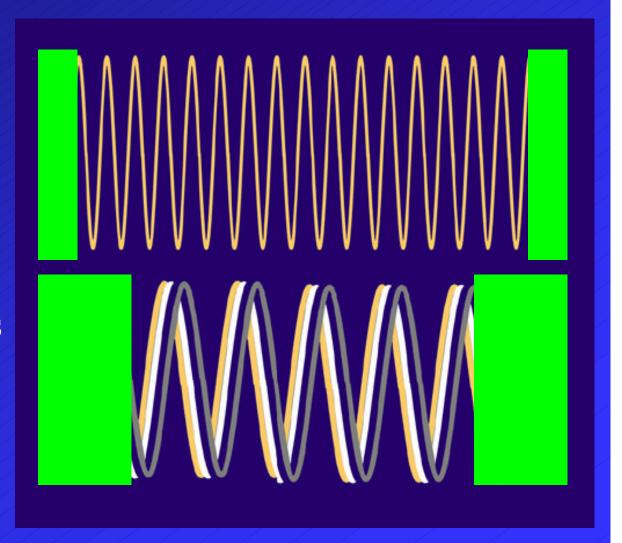


Dosisrelevante Geometrieparameter bei einem Multislice - CT?

1. Overbeaming

wird mit zunehmender Anzahl Schichten kleiner

andere Möglichkeit: Optimierung Fokus und Blende

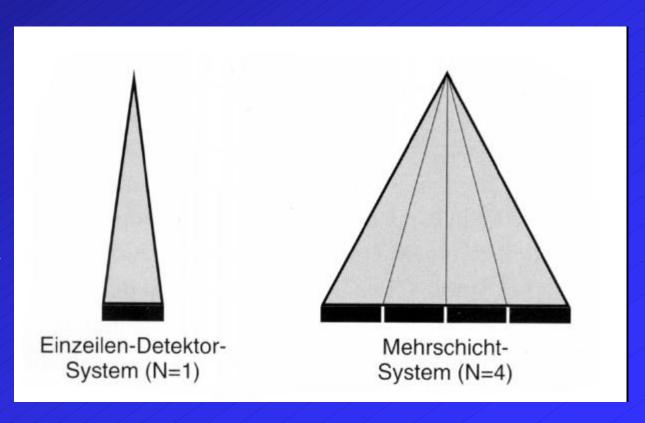

Multislice - CT: Dosisaspekte

christoph.hoeschen@med.uni-magdeburg.de

Dosisrelevante Geometrieparameter bei einem Multislice - CT?

2. Overscanning

wird mit zunehmender Anzahl Schichten immer schlimmer, solange bis Gesamtbreite des Detektors größer als Scanbereich (Rückkehr zu parallel scanning)



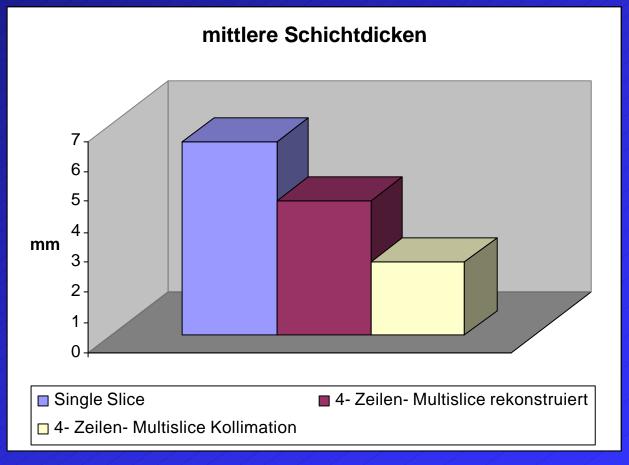
Dosisrelevante Geometrieparameter bei einem Multislice - CT?

3. Stegbreiten

führen zu geringerem Füllfaktor und damit zu geringerer Dosieffizienz der Detektoren

Dosisrelevante Aufnahmeparameter bei einem Multislice - CT?

isotrope Voxel


hohe Ortsauflösung

dünnere Schichten

längere Scanbereiche

Dosisrelevante Aufnahmeparameter bei einem Multislice - CT? Beispiel Schichtdicken

Dosisrelevante Aufnahmeparameter bei einem Multislice - CT?

mehr Untersuchungsarten möglich

schnellere Untersuchungen ==> mehr Untersuchungen möglich

z.T. Überlappung der Schichten

aber: geschickte Rauschreduktion möglich

Bestimmung der effektiven Dosis in der Multislice - Computertomographie

- 1. Röhrenstrom
- x 2. Zeit
- = Ladung
- x 3. Normierter CDTI frei Luft
- x 4. Spannungskorrektur
- = Achsendosis frei Luft
- x 5. Gesamtkollimation
- x 6. Anzahl Umläufe
- = Dosislängenprodukt
- x 7. Konversionsfaktor
- x 8. Gerätekorrekturfaktor
- = Effektive Dosis

I (mA)

 t

Q (mC, hier mAs)

CDTI (mGy/mAs)

 k_{IJ} (1)

 $CDTI_{I}$ (mGy)

Nxh (cm)

(1)

DLP_I (mGy cm)

 f_{av} (mSv/(mGy cm))

 k_{CT} (1)

E (mSv)

Bestimmung der effektiven Dosis in der Multislice - Computertomographie

1. Röhrenstrom

x 2. Zeit

= Ladung

x 3. Normierter CDTI frei Luft

x 4. Spannungskorrektur

= Achsendosis frei Luft

x 5. Kollimation

x 6. Anzahl Schichten

= Dosislängenprodukt

x 7. Konversionsfaktor

x 8. Gerätekorrekturfaktor

= Effektive Dosis

280 mA

0.5 s

140 mAs

0,205

 $(120/120)^{2,5}$

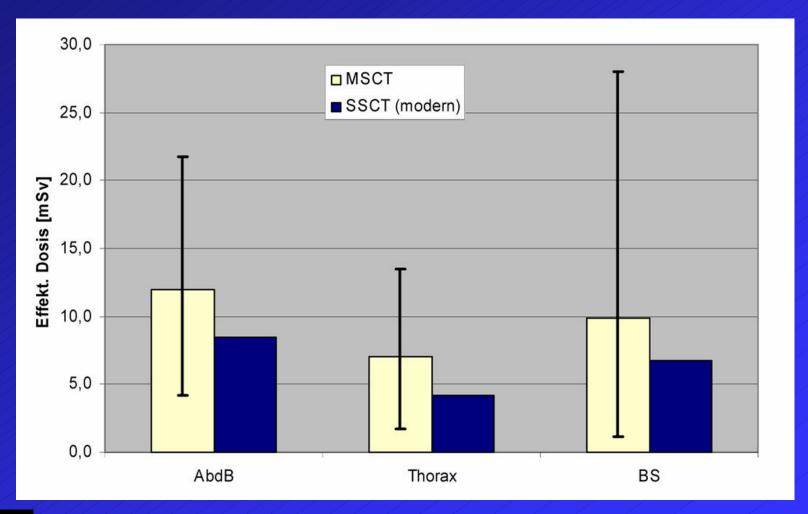
28,7 mGy

4*0,15 cm

36

619,92 mGy cm

0,0178 mSv/(mGy cm)


1,0

11,035 mSv

Multislice - CT: Dosisaspekte

Tendenzen für die effektive Dosis in der Multislice - Computertomographie

Zusammenfassung

erste Berechnungen aus Umfragen zeigen: ca. 25 - 33% erhöhte Dosis pro Untersuchung mit MSCT

starke Herstellerabhängigkeit

mehr Untersuchungsarten, Untersuchungen (Achtung: rechtfertigende Indikation) ,,Rechtfertigt das Mehr an Information das Mehr an Dosis?"

Zusammenfassung

Deshalb muss sich der Radiologe immer fragen:

- Brauche ich die Isotropie?
- Brauche ich die dünnen Schichten?
- Ist mein Pitch sinnvoll zur Schichtung gewählt (nicht nur Verbesserung des Schichtprofils)?
 - Ist es sinnvoll das Overscanning in Kauf zu nehmen oder kann ich die Anzahl Schichten / Umlauf reduzieren (Zeit)?

Haben Sie noch Fragen?

Vielen Dank für Ihre Aufmerksamkeit!

Http://www.med.uni-magdeburg/fme/zrad/kdr/

