Berechnungen zur Dosisabschätzung im CT

8. Fortbildungsseminar der APT, Magdeburg

Heart Scan	\$ 450.00
Lung Cancer Screening	\$ 400.00
Heart + Lung Scan	\$ 650.00
Body Scan	\$ 895.00
Virtual Colonoscopy	\$ 900.00
Body Scan + Virtual Colon	\$1,400.00
Osteoporosis Screening	\$ 199.00
Add Osteoporosis Test to any Scan	\$ 99.00
CT Coronary Angiography	CALL

Übersicht

- Dosisrelevante Scanparameter
 - Dokumentation nach §28 RöV
- Dosisberechnungen
 - "Hard": die harte Tour, zu Fuß
 - "Soft": Software zur Dosisberechnung
 - "Smart": Dosisberechnung für unterwegs
 - "Easy": Geräteanzeigen
- Ausblick.

- Packages
- CoreScore Cost: \$845
 - NeckScore
 - HeartScore
 - LungScore
 - · Abdominal/Pelvic Score
 - · CD of Images
 - No Consultation (Images will be shown by the CT Technologist or Medical Assistant)
- 🞝 TotalScore Cost: \$945
 - SinusScore
 - NeckScore
 - HeartScore
 - LungScore
 - · Abdominal/Pelvic Score
 - BoneScore
 - · CD of Images
 - No Consultation (Images will be shown by the CT Technologist or Medical Assistant)
- UltraScore Cost: \$1295
 - TotalScore
 - ColonScore
 - CD of Images
 - No Consultation (Images will be shown by the CT Technologist or Medical Assistant)

Relevante Dosisgrößen

- Gewichteter CTDI (CTDI_w)
 - Grund: Dosisreferenzwerte
- Dosislängenprodukt (DLP_w)
 - Grund: Dosisreferenzwerte
- Effektiver CTDI oder Volumen-CTDI (CTDI_{vol})
 - Grund: Anzeige an Scannerkonsolen
- Effektive Dosis (E)
 - Grund: Vergleich mit anderen Modalitäten
- Uterusdosis (D_{uterus})
 - Grund: Schwangerschaft.

Dosisrelevante Scanparameter

- Röhrenspannung U (kV)
- Röhrenstrom I (mA)

"Hard": Tabellen, Papier und Rechner

Dosisrelevante Gerätedaten

Modell	Gene -	Fokus-Achs-	Minimales	Gesamt-	Det	ektor 📫	Spannung	Schicht-	CTDI	16-cm-Phai	ntom	32-cm-Pha	intom	Тур-	Quelle
	ration	Abstand	mAs-	Filterung	Тур	Anord-	(kV)	dicke	(mGy/mAs)	_n CTDI _{w,H}	P _H	_n CTDI _{w,B}	P	Klasse	
		(mm)	Produkt	(mm)		nung		(mm)	—	(mGy/mAs)	/ \	(mGy/mAs			
CX/Q CX/S LX	3.	606	140 120 60	3,5Al+0,1Cu	Gas	symm.	120	10	0,20	0,15	0,75	0,08	0,40	11	а
SR4000 SR5000 SR7000	3.	606	65 50 30	3,5Al+0,1Cu	Gas	symm.	120	10	0,20	0,15	0,75	0,08	0,40	П	а
AV AV-Pf AV-EU AV-P1	3.	606	65 65 30 15	3,5Al+0,1Cu	Gas	symm.	120	10	0,20	0,15	0,75	0,08	0,40	11	а
AV-PS AV-E	3.	606	15 30	3,5Al+0,1Cu	FK	symm.	120	10	0,20	0,15	0,75	0,08	0,40	П	а
M EG	3.	475	20	3Al-€q.	FK	asymm.	120	10	0,50	0,36	0,72	0,25	0,50	(2) (3)	а
Secura	3.	606	2,5	3,5Al+0,1Cu	FK	symm.	120	10	0,20	0,15	0,75	0,08	0,40	11	а
Aura (1)	3.	515	10	1,5Al+ 0,07Cu	FK	asymm.	120	10	0,44	0,30	0,69	0,21	0,49	[]] (2) [] (3)	а
Anm.:	⁽¹⁾ A	u s f	Ϋ́h	(2) Kopf	(3) Rumpf										
Quellen:	a :	H e													

Tab. A.2 bis A.8

Typklasse berücksichtigt scanner-spezifische Unterschiede Geometrie, (Form-) Filter.

Gewichteter CTDI (CTDI_w)

Modell	 Spannung (kV)	Schicht- dicke (mm)	_n CTDI _{Luft} (mGy/mAs)	16-cm-Phan "CTDI _{w,H} (mGy/mAs)	ntom P _H	32-cm-Phantom CIDI _{w,B} P _B (mGy/mAs)	Typ- Klasse
AV-PS AV-E	 120	10	0,20	0,15	0,75	0,08 0,40	11

$$CTDI_{w,H/B} = {}_{n}CTDI_{w,H/B} \cdot \left(\frac{U}{U_{ref}}\right)^{2,5} \cdot I \cdot t$$

Beispiel: Philips Tomoscan AV-PS

140 kV / 120 mA / 1,5 s

Rumpfregion

$$CTDI_{w,B} = 0.08 \cdot \left(\frac{140}{120}\right)^{2.5} \cdot 120 \cdot 1.5 = 21.2 \ mGy$$

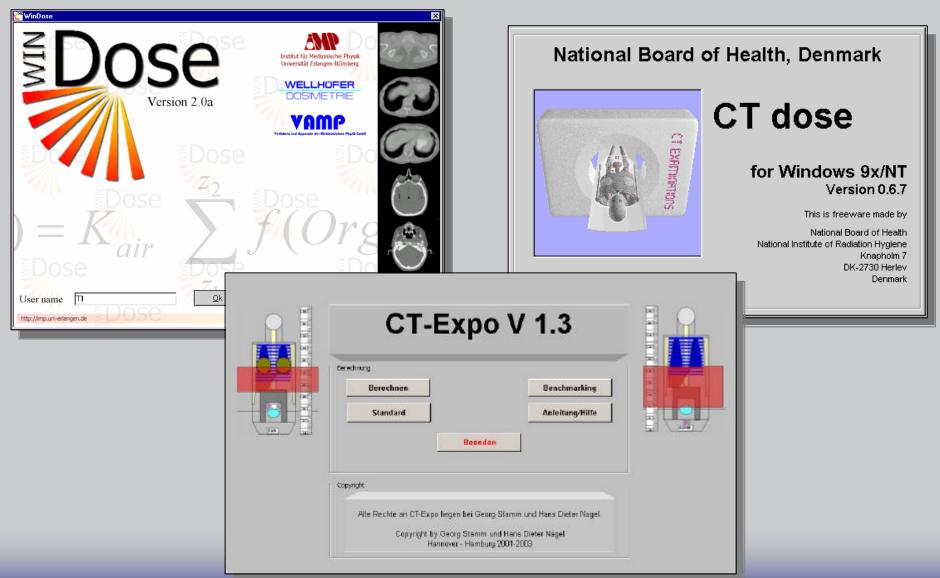
Dosislängenprodukt (DLP_w)

$$DLP_{w} = CTDI_{w} \cdot \frac{L}{p}$$

$$DLP_{w} = CTDI_{w} \cdot n \cdot h$$

Beispiel: Philips Tomoscan AV-PS

140 kV / 120 mA / 1,5 s / Rumpfregion (CTDI_w = 21,2 mGy)


n = 30, h = 7 mm TV = 10.5 mm -> L = 31.5 cm, <math>p = 1.5

$$DLP_{w} = 21.2 \cdot 30 \cdot 7.10 = 445 \ mGy \cdot cm$$

$$DLP_{w} = 21.2 \cdot \frac{31.5}{1.5} = 445 \ mGy \cdot cm$$

"Soft": Dosisberechnungsprogramme

"Soft": Dosisberechnungsprogramme

1. WINDose (nur englisch)

Teuer (kommerzielles

Nur für wenige Gerät

Eingeschränktes Fun

2. CT dose (nur englisze

Kostenlos (Freeware

Nicht ausgereift (Beta

Eingeschränktes Fun

National Board of Health, Denmark

Benchmarking

Berechnen

Standard

Anleitung/Hilfe Beenden

Alle Rechte an CT-Expo liegen bei Georg Stamm und Hans Dieter Nagel Copyright by Georg Stamm und Hans Dieter Nagel

Hannover - Hamburg 2001-2003

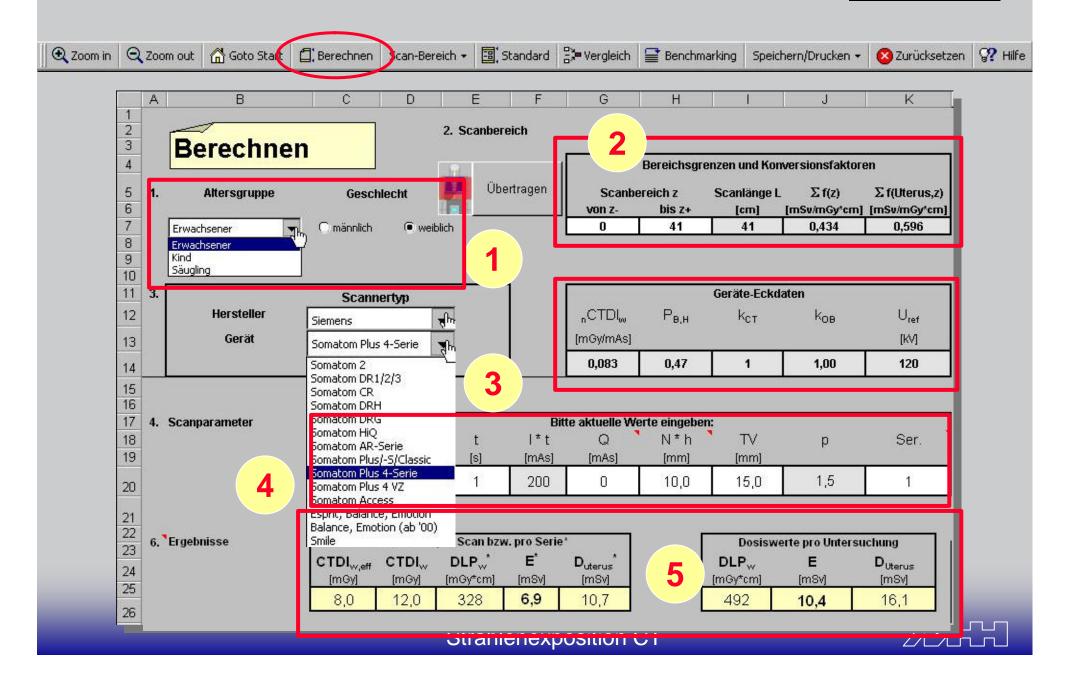
3. CT-Expo (deutsch und englisch)

Preiswert (Shareware, 30 Euro)

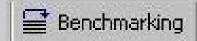
Für alle Geräte

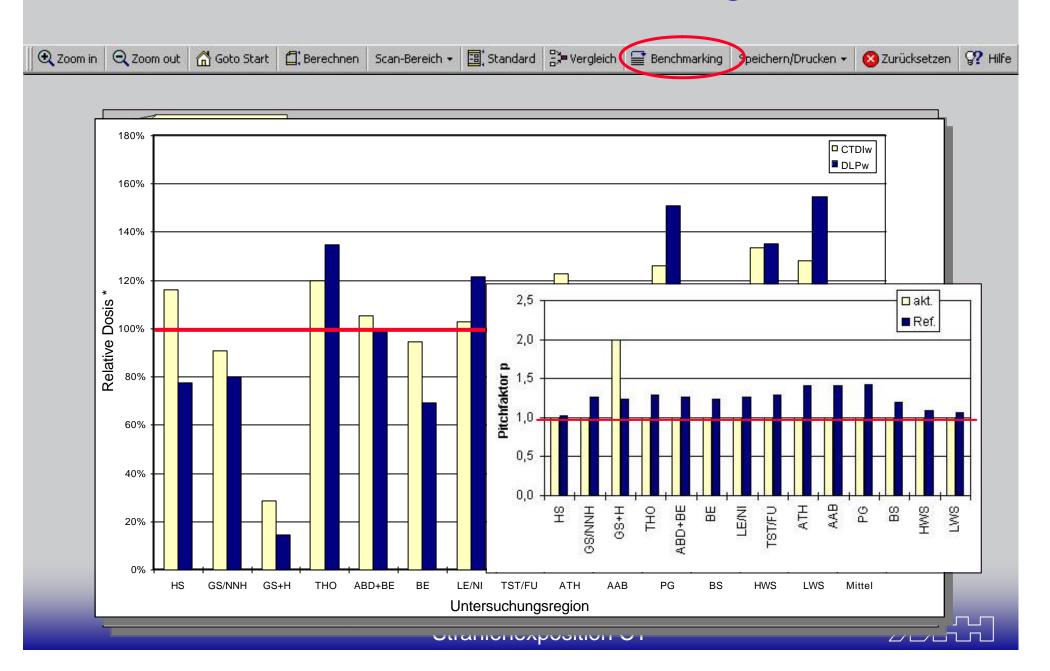
Realisierung

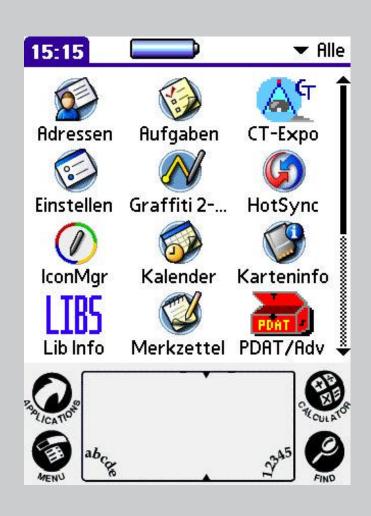
- MS-EXCEL Applikation (PC und MAC) (lauffähig ab EXCEL 97)
- Steuerung durch VBA-Makros
- Für alle Scannertypen
- Für alle Patientengruppen
 - Inkl. Kinder und Säuglinge
- Modularer Aufbau
 - 'Berechnen'
 - Standard'
 - 'Benchmarking'

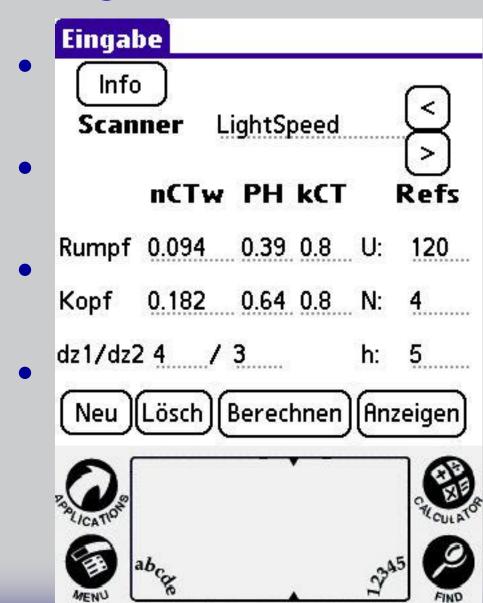


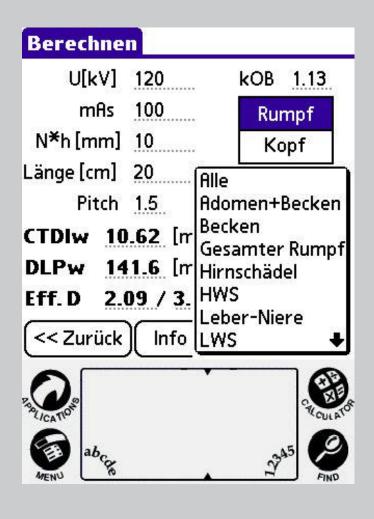
- Inkl. Online-Hilfe und ausführlichem PDF-Handbuch
- Update Garantie für mind. 5 Jahre.




Modul 'Berechnen'




Modul 'Benchmarking'



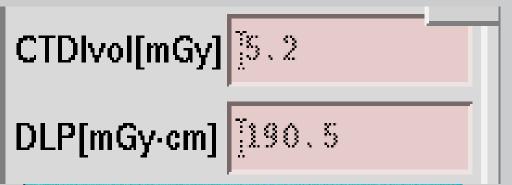
"Smart": Berechnungen auf dem Palm

Eingabe von Scannerdaten und Konversionsfaktoren

- Eingabe der Untersuchungsdaten
- Auswahl der Region
 - Mittlere Konversionsfaktoren!

```
CTDIw 10.62 [mGy]

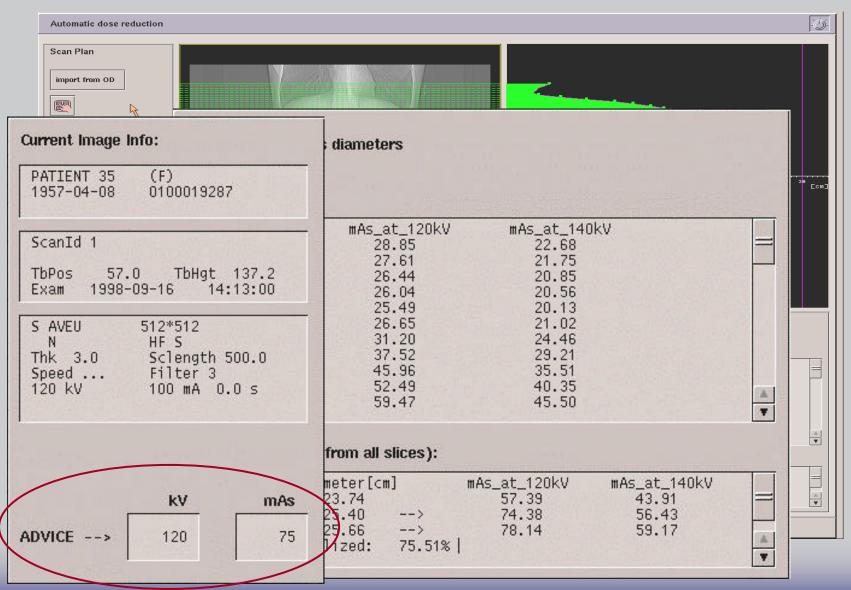
DLPw 141.6 [mGy*cm]


Eff. D 1.80 / 3.25 [mSv]

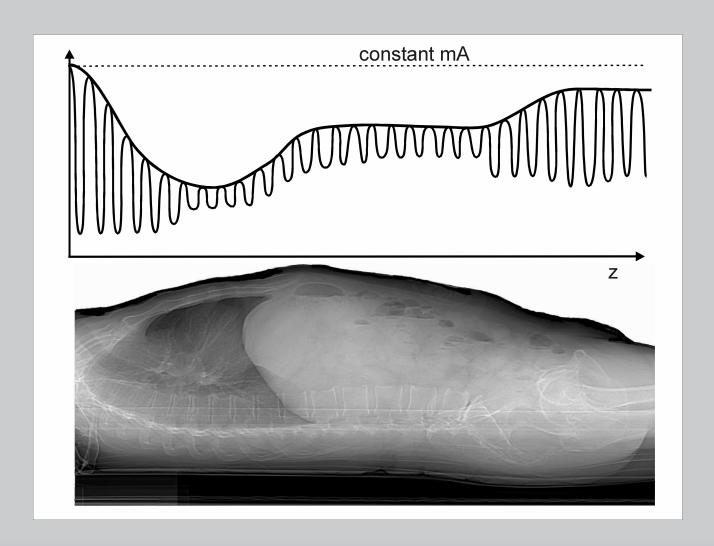

<< Zurück Info Neu berechnen
```

"Easy": Geräteseitige Dosisanzeige

$$CTDI_{w,eff} = \frac{CTDI_{w}}{Pitch \ p}$$


- Mittlere Dosis im gescannten Volumen
- Norm DIN/EN 60601-1-44 auch CTDI_{Vol} (Volumen-CTDI)
- Basis für geräteseitige Dosisanzeige an neueren Scannern
- Achtung! Bezeichnung nicht eindeutig
- Werte teilweise falsch, z.B. CTDI_{w.B} für Halsregion.

Ausblick: "Belichtungssteuerung"



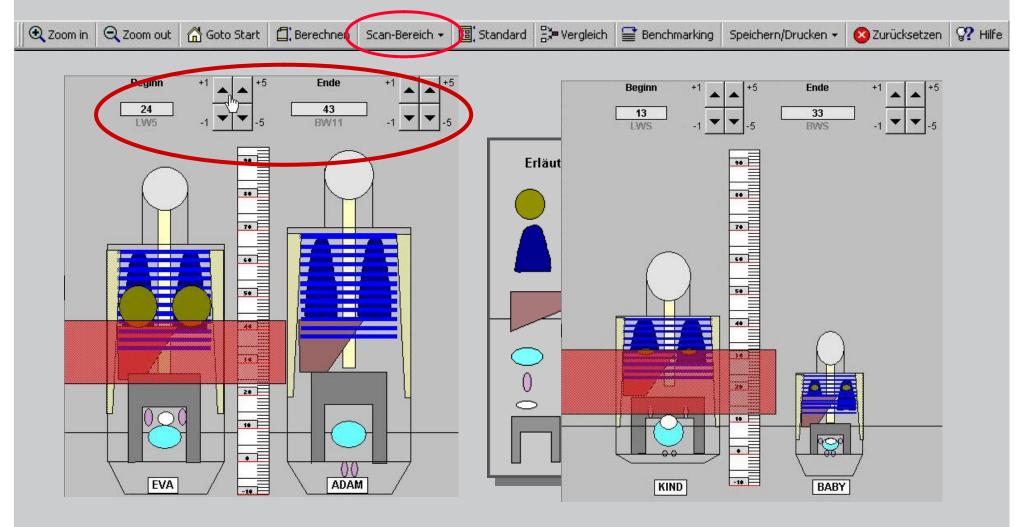
Probleme I: Röhrenstrommodulation

- Automatische Stromanpassung an Körperquerschnitt (sinusförmig oder adaptiv)
- Dosisreduktion 10 40% (je nach Region)
- Nur bei stark elliptischen Querschnitt
- Berechnen mit Maximalwert liefert konservative Abschätzung.

Probleme II: Belichtungsautomatik

Probleme II: Belichtungsautomatik

- Automatische Stromanpassung in Patientenlängsrichtung
 - Vorteil bei kombinierten Protokollen(Thorax + Abdomen, Abdomen + Becken)
- Berechnung für jede einzelne Schicht?
- Mittlerer CTDI_w für gesamte Untersuchung?
- DLP in der Konsolenanzeige
 - Berechnung eines mittleren mAs-Produkts liefert brauchbare Abschätzung.


Zusammenfassung

- Dosisberechnung CT: keine Geheimwissenschaft
- Basisdaten alle vorhanden
- Relevante Dosisgrößen
 - Gewichteter CTDI_w bzw. Volumen CTDI_{vol}
 - Dosislängenprodukt DLP
 - (Effektive Dosis, Uterusdosis)
- Dosissoftware
 - Erhebliche Erleichterung
 - Kontrollinstrument
 - Dosisoptimierung
- "Belichtungsautomatik"
 - ist bei modernen Geräten verfügbar
 - bringt aber auch neue Probleme.

Eingabe Scanbereich

Erwachsene (w./m.)

Kinder / Säuglinge

Uterusdosis (D_{Uterus})

$$D_{Uterus} = CTDI_L \cdot / p \cdot k_{CT(H)}$$

Philips Tomoscan AV-PS, Klasse II Beispiel:

111

IV

V

Тур-	Gerätefaktor k _{CT}			
Klasse	Kopf/Hals	Rumpf	m (L =	
0	1,10	1,25	, z - = 0	
1	1,00	1,00		
11	0 90 32	0.80		

ilips Tomos	can AV-PS, Kla	sse II		24 bis 25	0,0051
0 1 1 / 4 0 0	1 / 4 F (OTD)		LW5	23 bis 24	0,0061
Gerätefa	ktor k	= 49 m	Sacrum	22 bis 23 21 bis 22	0,0075 0,0095
Goratora	СТ	m (L = 3)		20 bis 21	0,0093
Copf/Hals	Rumpf		i	19 bis 20	0,0138
		z - 0		18 bis 19	0,0169
1,10	1,25	, 2 – 0 (17 bis 18	0,0208
.,	1,1==			16 bis 17	0,0259
1,00	1,00		Ι.,	15 bis 16	0,0320
1,00	1,00			14 bis 15	0,0560
0.90	0.80			13 bis 14	0,0916
32				bis 13	0,0886
32				ois 12	0,0447
) f(114	$(a_{\alpha}, a_{\alpha}, a_{\alpha},$	502 100	C_{11} / m	vbis 11	0,0303
\mathcal{F}_{i}	ferus, z) = 0	1,392 mi	SV / mU	f V is 10	0,0249
0 2 3		,		pis 9	0,0199
0				pis 8	0,0166
0.00	U. 10			pis 7	0,0135
-,	7.1			5 bis 6	0,0113
			Tuber ischii	4 bis 5	0,0091

-2 bis -1

Schichtlage

(cm)

33 bis 34

32 bis 33

31 bis 32

30 bis 31

29 bis 30

28 bis 29

27 bis 28

26 bis 27

25 bis 26

Konversionsfaktor

(mSv/mGyácm)

0,0007

0.0010

0.0012

0.0016

0,0019

0,0024

0,0028

0.0034

0,0042

0,0076 0,0060 0,0047 0,0039 0.0030

0,0024

Anatomische

Landmarke

LW2

LW3

LW4

$$D_{Uterus} = 49 \cdot 1_{1,5} \cdot 0,90 \cdot 0,592 = 17 \text{ mSv}$$

Umrechnungsfaktoren

Anatomische

Körperabschnitt	Erwad	chsene	Kinder (7	
	(weibl.)	(männl.)	(weibl.)	
Schädel	0,0022	0,0020	0,0028	
Hals	0,0051	0,0047	0,0056	
Thorax	0,0090	0,0068	0,018	
Oberbauch	0,010	0,0091	0,020	
Becken (*)	0,011	0,0062	0,018	
gesamtes Abdomen (*)	0,010	0,0072	0,019	

(*) ohne Direktbestrahlung der Keimdrüsen bei männlichen Patienten

Tab. 3.1:

Mittlere Konversionsfaktoren f_{mittel}

Kinder: Faktor 2

Säuglinge: Faktor 3

Tab. 6.3:

Uterusdosis-Konversionsfaktoren f(Uterus,z)

25 bis 26	Landmarke	(cm)	(mSv/mGyácm)
LW5 23 bis 24 22 bis 23 0,0075 Sacrum 21 bis 22 0,0095 0,0112 0,0112 19 bis 20 0,0138 18 bis 19 0,0169 17 bis 18 0,0208 16 bis 17 0,0259 15 bis 16 0,0320 14 bis 15 13 bis 14 0,0916 11 bis 12 12 bis 13 0,0886 Sacrum 11 bis 12 0,0447 Coccyx 10 bis 11 0,0303 1 9 bis 10 Coccyx 10 bis 11 0,0303 1 9 bis 10 Coccyx 10 bis 11 0,0303 1 9 bis 6 1 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047		25 bis 26	0,0042
Sacrum 21 bis 22 0,0075 20 bis 21 0,0112 19 bis 20 0,0138 18 bis 19 0,0169 17 bis 18 0,0208 16 bis 17 0,0259 15 bis 16 0,0320 14 bis 15 0,0560 13 bis 14 0,0916 12 bis 13 0,0886 Sacrum 11 bis 12 0,0447 Coccyx 10 bis 11 0,0303 9 bis 10 0,0249 Coccyx 8 bis 9 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0060 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047		24 bis 25	0,0051
Sacrum 21 bis 22 0,0095 20 bis 21 0,0112 19 bis 20 0,0138 18 bis 19 0,0169 17 bis 18 0,0208 16 bis 17 0,0259 15 bis 16 0,0320 14 bis 15 0,0560 13 bis 14 0,0916 12 bis 13 0,0886 Sacrum 11 bis 12 0,0447 Coccyx 10 bis 11 0,0303 9 bis 10 0,0249 Coccyx 8 bis 9 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047	LW5	23 bis 24	0,0061
20 bis 21		22 bis 23	0,0075
19 bis 20	Sacrum	21 bis 22	0,0095
18 bis 19		20 bis 21	0,0112
17 bis 18		19 bis 20	0,0138
16 bis 17	I	18 bis 19	0,0169
15 bis 16			0,0208
14 bis 15			· ·
13 bis 14			
12 bis 13			· ·
Sacrum 11 bis 12 0,0447 Coccyx 10 bis 11 0,0303 9 bis 10 0,0249 Coccyx 8 bis 9 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047			· ·
Coccyx 10 bis 11 0,0303 9 bis 10 0,0249 Coccyx 8 bis 9 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047			· ·
9 bis 10			·
Coccyx 8 bis 9 0,0199 7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047	Coccyx		· ·
7 bis 8 0,0166 6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047	_		· · ·
6 bis 7 0,0135 5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047	Coccyx		
5 bis 6 0,0113 Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047			· ·
Tuber ischii 4 bis 5 0,0091 3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047			· · ·
3 bis 4 0,0076 2 bis 3 0,0060 1 bis 2 0,0047			· · ·
2 bis 3 0,0060 1 bis 2 0,0047	Tuber ischii		
1 bis 2 0,0047			· ·
· · · · · · · · · · · · · · · · · · ·			· ·
Symphyse 0 bis 1 0,0039			· ·
	Symphyse	0 bis 1	0,0039

Schichtlage

Konversionsfaktor

Gerätefaktoren

- Erforderlich für: Effektivdosis, Uterusdosis
- Konversionsfaktoren basieren auf einem einzigen, älteren Scannertyp
- Korrektur scanner-spezifischer Unterschiede:
 - Geometrie, Strahlenfilter, Formfilter
 - Unterschiedliche Faktoren f
 ür Kopf/Hals- bzw. Rumpfregion
 - Einteilung in 6 Typklassen.

Тур-	Gerätefaktor k _{ct}				
Klasse	Kopf/Hals	Rumpf			
0	1,10	1,25			
1	1,00	1,00			
11	0,90	0,80			
111	0,80	0,65			
IV	0,70	0,50			
V	0,60	0,40			

Tab. A.1

