14. APT Seminar der DRG, Münster

MR-Bildgebung und Implantate -Wechselwirkungen der elektromagnetischen Felder mit Implantaten

Michael Bock

Abt. Medizinische Physik in der Radiologie (E020) Deutsches Krebsforschungszentrum Heidelberg

dkfz. Motivation: Implantate im MRT

Risiken von Implantaten

- · Mechanische Kräfte auf Implantate
- · Bildartefakte
- Erhitzungen
- · Fehlfunktionen von elektronischen Geräten

Warum sind Implantate nicht generell eine MR-Kontraindikation?

- Patienten mit Implantaten profitieren von MR-Untersuchungen, da sie zur Kontrolle oft engmaschig untersucht werden
- MR-Untersuchungen ersparen den Patienten eine hohe kumulative Strahlendosis

dkfz. MR-Risiken: statisches Feld *B*₀

Magnetische Kraft

- Ferro- oder paramagnetische
 Objekte werden angezogen
- Größte Kraft im Streufeld des Magneten (fringe field)
- Kraft ist proportional dB/dz
- aktiv abgeschirmte Magnete sind gefährlicher
- Sicherheit kann nicht allein auf Feldstärke bezogen werden
- Kraft verschwindet im Iso-Zentrum

dkfz. Dokumentierte Unfälle mit MR-Systemen

dkfz. MR-Risiken: statisches Feld *B*₀

Drehmoment

- Magnetische Objekte richten sich im statischen Feld aus
- Drehmoment wirkt am stärksten im Iso-Zentrum T = M x B

 B_{c}

dkfz. Artefakte

Suszeptibilität

- Lokale Verzerrung des Magnetfeldes durch Suszeptibilitätssprünge
- - Suszeptibilität des Materials relativ zur Umgebung (Δχ)
 - Form des Objekts
 - · Oberflächenbeschaffenheit
 - Richtung des Grundmagnetfeldes B₀

Ladd ME et al., Biopsy Needle Susceptibility Artifacts. Magn Reson Med 36:646-651 (1996)

dkfz. Suszeptibilitätsartefakte: Form der Nadelspitze

Müller-Bierl B et al., Numerical modeling of needle tip artifacts. Med Phys 31, 579-587 (2004)

dkfz. Artefakte

Wirbelströme

- Gradientenschaltungen induzieren in elektrisch leitenden (Kreis-)Strukturen Wirbelströme
- Wirbelströme erzeugen
 Magnetfelder, die der Ursache (Gradient) entgegenwirken
 (Lenz'sche Regel)
- Verzerrungen des lokalen Gradientenfeldes
- · Bildfehlkodierungen
- · Lösung: schlechte Leitfähigkeit

Cu

а

55 Hz/px

Zeit

dkfz. Artefakte

HF-Abschirmung

- Hochfrequenz-Anregung treibt in elektrisch leitenden Strukturen Ströme
- Im Inneren von leitenden Strukturen wird das HF-Feld abgeschwächt
- HF-Anregungswinkel wird kleiner (Kontraständerung)
- In Empfangsspulen wird weniger Spannung induziert (Signalabschwächung)

Wang Y et al., *Quantitative Evaluation of Susceptibility and Shielding Effects of Nitinol, Platinum, Cobalt-Alloy, and Stainless Steel Stents.* Magn Reson Med 49:972–976 (2003)

dkfz. Hochfrequenzerhitzung

Problem

- Elektrische Feld des HF-Senders koppelt mit leitenden Strukturen
- $\Delta T > 50$ K an Katheterspitze
- Erhitzung minimal bei zentrumsnaher Katheterlage
- Erhitzung ist längenabhängig

dkfz. Hochfrequenzerhitzung

A. Bücker, Univ. Aachen

dkfz. Führungsdraht aus Plastikfaser

Designkriterien

- keine Hochfrequenzerhitzung
- Mechanische Stabilität
- Flexibilität
- Biokompatibilität

Krueger S,..., Buecker A: Magn Reson Med 60: 1190-1196 (2008)

C

dkfz. Hochfrequenzerhitzung

Resonanzlänge

• HF-Wellenlänge in Gewebe:

 $\lambda \propto rac{1}{\sqrt{arepsilon} \cdot B_0}$

- ϵ in Gewebe ≈ 80
- Wellenlänge (¹H)
 - 1.5 T : 52 cm
 - 3.0 T : 26 cm
 - 7.0 T : 11 cm

Ladd M et al., *Reduction of Resonant RF Heating in Intravascular Catheters Using Coaxial Chokes*. Magn Reson Med 43:615–619 (2000)

dkfz. Signalübertragung ohne Erhitzung

Elektronische Auftrennung

- elektronische Elemente zur Auftrennung der Leitung
- Mantelwellensperren Ladd ME, Quick HH: *Magn Reson Med* 43: 615-619 (2000)
- PIN-Dioden Umathum R, et al. ISMRM 2006, p. 1402
- Transformatoren

Weiss S, et al. *Magn Reson Med* 54:182-189 (2005)

 Abstand verringert sich mit der Feldstärke (40 cm bei 1.5 T)

Krafft A et al: Magn Reson Mater Phy 19: 257-266 (2006

dkfz. Herzschrittmacher

Problem

- . Lange Elektrodenkabel
- Variable Positionierung im Patienten
- Variable Positionierung des Patienten

Aus: Oberle M. Modeling and Validation in MR Coil Design using SPEAG Solutions. Magdeburg 2009

dkfz. Herzschrittmacher: Erhitzung der Kabel

Nordbeck P. Measuring RF-Induced Currents inside Implants: Impact of Device Configuration on MRI Safety of Cardiac Pacemaker Leads. ISMRM 2008 (Toronto), S. 899

Simulation des HF-Feldes ohne Implantat

Hoch aufgelöste Simulation mit Implantat in einer Box mit festen Randwerten

Aus: Oberle M. Modeling and Validation in MR Coil Design using SPEAG Solutions. Magdeburg 2009

Aus: Oberle M. Modeling and Validation in MR Coil Design using SPEAG Solutions. Magdeburg 2009

dkfz. EnRhythm MRI[™] Medtronic

MR-kompatibler Schrittmacher

- Keine magnetischen Komponenten
- Schutz der Elektronik vor HF-Induktion (Abschirmung)
- CapSureFix MRI SureScan[™] Elektrode:

"Dabei wurde die Geometrie des Elektrodenkörpers so modifiziert, dass Wechselwirkungen mit den Gradienten und Hochfrequenzfeldern des MRT und damit auch eine Erhitzung der Elektrodenspitze verhindert werden können."

dkfz. Hip Joint

From: S. A. Mohsin, PhD Thesis

dkfz. Hip Joint

From: S. A. Mohsin, PhD Thesis

dkfz. CranioFix Implantat bei 7 Tesla?

CranioFix, Aesculap

MR-sicher bis 3T

Shellock FG, Shellock VJ: Cranial Bone Flap Fixation Clamps: Compatibility at MR Imaging. Radiology 207; 822-825 (1998)

dkfz. Erwärmungsmessungen

dkfz. Artefakte

Fast SE Sequence

- TR/TE = 12000/57ms
- Flip angle = 120°
- BW = 100Hz/pix
- pixel size = $0.5 \times 0.5 \times 1$ mm

GRE Sequence

- TR/TE = 8.8/3.14 ms
- Flip angle = 14°
- BW = 300 Hz/pix
- pixel size = 0.5 × 0.5 × 1 mm

Daten: Jaane Rauschenberg

dkfz. Glioblastom-Patient mit CranioFix @ 7 Tesla

3D FLASH @ 7T

TR/TE= 6.6/2.4 ms, α = 12°, BW= 310 Hz/px, Matrix= 448²

fast SE T2 @ 7T

TR/TE= 12000/57 ms, α = 120°, BW= 100 Hz/px, Matrix= 624x768

dkfz. RFID Tags

Patientenidentifikation

- RFID Armband
- Patient kann eindeutig identifiziert werden
- Nicht ansprechbare Patienten
- während einer OP

Steffen T et al. Safety and reliability of RFID in Magnetic Resonance Imaging and Computed Tomography. Patient Safety in Surgery 4:2 (2010)

dkfz. Zusammenfassung

Statisches Feld

- Kraftwirkung im Streufeld
- Drehmoment
- · Suszeptibilitätsartefakte

Gradientenfelder

· Wirbelströme

Hochfrequenzfelder

- Abschirmung
- Erhitzung
- Fehlfunktion von elektronischen Schaltungen

Nicht-magnetische Komponenten Suszeptibilitätsanpassung

Schlecht leitendes Material

Segmentation Resonanzlängen vermeiden HF-Abschirmung

dkfz. Just be very careful in the design!

SPEAG AG, Zürich

· Dr. Michael Oberle

Univ. Jena

. Dr. Thies Jochimsen

DKFZ

- . Dr. Jaane Rauschenberg
- · Jens Gröbner