

UniversitätsKlinikum Heidelberg

Experimentelle Dosimetrie & Simulation der Strahlenexposition in der Computertomographie Ansätze zur Dosisreduktion

M.Sc. Stella Veloza, Physicist Dr. Wolfram Stiller, Physicist

14. Fortbildungsseminar der Arbeitsgemeinschaft Physik und Technik der DRG

Münster, 19. Juni 2010

Overview

1. Introduction

- Statement of the problem
- CT-specific dose descriptors
- Solution/approach

2. Measurement of radiation exposure in CT

- Radiation detectors results and evaluation
- Thermoluminiscence dosimetry methodogy

3. Monte Carlo simulation for dosimetry in CT

- Monte Carlo codes results and evaluation
- Geant4 modeling methodology

4. Conclusions & Outlook

Introduction

Statement of the problem

- CT is a widely available diagnostic tool
- CT examination is fast and comfortable for the patient
- ✓ User friendly
- High diagnostic accuracy
- New contrast media
- New combinations of imaging modalities
- Tendency to increase volume covered in a particular examination

Increasing radiation exposure

Determination of dose and techniques for dose reduction in CT

Parameters used to estimate dose in CT

Solution/approach: 3D dosimetry

Measurement of radiation exposure in CT

Reports: Instrumentation used for dose measurement in CT

MOSFET

• Cumulative point doses: absorbed dose and effective dose in organs

SOLID STATE DETECTORS

- Dose profiles , CTDI
- z-axis geometric efficiency using real time dose profiles

TLD

- Point dose measurement along the z-axis: dose profiles
- z-axis geometric efficiency using dose profiles
- Effective dose in organs

OSL

• Dose profiles, CTDI

Reports: Detector response evaluation

MOSFET

- Values available immediately
- ✓ Small size
- Isotropic
 response
- LLD = 1.40 mGy, limitation for low- dose applications

- 🗸 Small
- ✓ LiF approx. tissue equivalent (Z_{eff}=8.14)
 With high quality processing (great care, precise repeatability and similarity), then:
 ✓ Linear response
- High accuracy and sensitivity

✓ High sensitivity

OSL

- ✓ Linear response
- ✓ Reproducibility
- × 15 cm active length
- No tissue equivalence (Z_{eff}=11.28)

Solid state

- ✓ Higher sensitivity
- × 10 cm active length

Option selected: Thermoluminiscence dosimetry

14.07.10

Experimental Dosimetry and Simulation of Computed Tomography Radiation Exposure

dkfz.

14.07.10

Thermoluminiscence dosimetry: Methodology

Select TLD crystals

TLD- 100 LiF:Mg, Ti

- • Z_{eff} =8.2
- •Relative sensitivity 1.0
- •Energy response: 1.25 Over-response to irradiation
- •Fading: 5%/yr at 20°

MCP-100D LiF:Mg,Cu,P

- • Z_{eff} =8.2
- •Relative sensitivity 15
- •Energy response: 0.98 Under-response to radiation
- •Fading: negligible

Glow curves (signal intensity vs. time)

Time-temperature profiles for readout

Time-temperature profile TLD-100

Time-temperature profile MCP-100D

Data acquisition

Schematic of the experimental 3D thermoluminiscence dosimetry

Axial dose MC distribution Deak et al., Eur Radiol 2008(18)

Experimental Dosimetry and Simulation of Computed Tomography Radiation Exposure

Monte Carlo simulation for dosimetry in CT

Reports: Aspects simulated

MNCP

- 3D voxelized patient models (baby, adults)
- Point source, collimation
- Charged-particle equilibrium (CPE)
- X-Ray source movement
- Effect of ripple in electron energy
- Anode angle
- Distance from focal spot to isocenter

GEANT4 & GATE

- X-Ray source spectra and detector materials of Micro-CT scanners
- X-Ray source (64 monochromatic energies (17 to 80 keV))
- Detector rotation in CT
- Cone beam CT with a monochromatic spheric source

ImpactMC

- TCM in MSCT scanners
- Homogeneous and heterogeneous phantoms

EGS

- CBCT of linear accelerator
- Target and filtration (manufacturer data)

PCXMC

- Mathematical hermaphroditic phantoms
- X-ray tube projection angles

Reports: Simulation results

MNCP	
 CTDI Whole body effective dose for helical scans (various pitch values) Normalized dose values for radiosensitive organs 	 Quantitative CT Dose Index (CTDI) Axial dose distribution CTDI for long cone beam collimation in CT head and CT body phantoms
 Breast dose (with/without TCM) in chest CT Absorbed radiation dose on surface 	EGS
GEANT4 & GATE	Point doseDepth dose profiles
 Contrast different tissue types in Micro-CT Radiation dose absorbed by organs 	PCXMC • Absorbed doses

Characteristics of the ideal software

Accurate modeling of low-energy processes Ideally suited for diagnostic imaging

Tools for modeling geometries

Option selected: Geant4

C++ language Contacts to CERN and to the Geant4 collaboration

Monte Carlo CT Model

detector array

X-ray output

Measurements of CT X-Ray spectra

using a Compton spectrometer

Schematic of the experimental arrangement:

Experimental setup of the Compton spectrometer:

X-ray output

Measurements of CT X-Ray spectra

using a Compton spectrometer

Schematic of the experimental arrangement:

Compton spectrometer "Spectro-X AB":

X-ray output

Reconstruction of primary X-ray spectra by deconvolution:

1. Calculation of primary photon energy:

$$E = \frac{E'}{1 - \frac{E'}{m_e c^2}}$$

2. Deconvolution of characteristic X-ray peaks:

$$\overline{S(E) = S_0(E) - \frac{T}{3m_e C^2} \left(\frac{E}{E^*}\right)^2 \left[\frac{d^2 S_0(E)}{d(E)^2} \left[(E)^2 - (E^*)^2\right] + 2E\frac{d S_0(E)}{d(E)}\right]}$$

Energy spectra: G4PrimaryGenerator

≭G4ParticleGun

Monoenergetic

✓ G4GeneralParticleSource

Energy distribution histogram with different interpolation options

0,07 Normalized number of photons [a.u.] 0,06 -0° -2° 0,05 4° 6° 0,04 -8° -10° 0,03 -12° -14° -16° 0,02 18° 20° 0,01 0,00 20 40 60 80 100 0 120 Energy [keV]

X-ray Spectra Measured at Different Fan Angle

Energy spectra: G4PrimaryGenerator

≭G4ParticleGun

Monoenergetic

✓G4GeneralParticleSource

Energy distribution histogram with different interpolation options

X-ray Spectrum Input Histogram

14.07.10

Bowtie filter profile

Idea: Use measurements of attenuated spectra across the fan beam:

Principle of fan-angle dependent spectral measurement:

X-ray spectra reconstructed as functions of fan angle:

Simulation of Bowtie filter

Properties of Bowtie filter

Decreasing transmission for increasing fan angle
Deflection of transmitted beam toward smaller angles at large fan angle, e.g. 16°

Video Geant4 simulation

Empirical Filter Geometry: Simulated Spectra

Comparison of measured & simulated spectra -**Results:**

- Good qualitative agreement
- Difference below ±1% above 20 keV
- Larger deviations at energies below 20 keV

7 1 1

3D rendering of simulated detector array

Conclusion & Outlook

Conclusions

- TLD is the most appropriate method to determine
 3D dose maps in CT
- A detailed model of an MDCT scanner is possible using Geant4, using spectral measurements as an input

Increased numbers of examinations, if correctly justified, must be viewed as resulting in a net benefit to patient management. However, the emphasis must be on dose optimization, and it requires accurate 3D dose maps to know the dose delivered to each radiosensitive organ.

Outlook

Future work:

- Model extension to "hybrid" filter materials/geometries
- Determination of Bowtie filter properties for different tube voltages

Perspectives:

- Study influence & contribution of different parameters in the absorbed dose.
- Simulation & analysis of new scanner designs or new scanner components

Outlook

Validation of MC simulation models

UniversitätsKlinikum Heidelberg

Thank you for your attention !

KVSF – Kompetenzverbund Strahlenforschung: "Innovative Verfahren der biomedizinischen Bildgebung zur Optimierung von medizinischen Strahlenanwendungen"

Sponsored by the:

Bundesministerium für Bildung und Forschung